MakeItFrom.com
Menu (ESC)

EN 1.6579 Steel vs. Nickel 686

EN 1.6579 steel belongs to the iron alloys classification, while nickel 686 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.6579 steel and the bottom bar is nickel 686.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
220
Elongation at Break, % 11 to 14
51
Fatigue Strength, MPa 380 to 570
410
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
77
Tensile Strength: Ultimate (UTS), MPa 850 to 980
780
Tensile Strength: Yield (Proof), MPa 600 to 910
350

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 440
980
Melting Completion (Liquidus), °C 1460
1380
Melting Onset (Solidus), °C 1410
1340
Specific Heat Capacity, J/kg-K 470
420
Thermal Conductivity, W/m-K 39
9.8
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
70
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 1.7
12
Embodied Energy, MJ/kg 22
170
Embodied Water, L/kg 56
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 120
320
Resilience: Unit (Modulus of Resilience), kJ/m3 950 to 2210
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
22
Strength to Weight: Axial, points 30 to 35
24
Strength to Weight: Bending, points 25 to 28
21
Thermal Diffusivity, mm2/s 11
2.6
Thermal Shock Resistance, points 25 to 29
21

Alloy Composition

Carbon (C), % 0.32 to 0.38
0 to 0.010
Chromium (Cr), % 1.4 to 1.7
19 to 23
Iron (Fe), % 94.2 to 96.1
0 to 5.0
Manganese (Mn), % 0.6 to 1.0
0 to 0.75
Molybdenum (Mo), % 0.15 to 0.35
15 to 17
Nickel (Ni), % 1.4 to 1.7
49.5 to 63
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 0.080
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0
0.020 to 0.25
Tungsten (W), % 0
3.0 to 4.4