MakeItFrom.com
Menu (ESC)

EN 1.6579 Steel vs. C85900 Brass

EN 1.6579 steel belongs to the iron alloys classification, while C85900 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.6579 steel and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260 to 290
85
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 11 to 14
30
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 850 to 980
460
Tensile Strength: Yield (Proof), MPa 600 to 910
190

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 440
130
Melting Completion (Liquidus), °C 1460
830
Melting Onset (Solidus), °C 1410
790
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
89
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
25
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
28

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
24
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.7
2.9
Embodied Energy, MJ/kg 22
49
Embodied Water, L/kg 56
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 950 to 2210
170
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 30 to 35
16
Strength to Weight: Bending, points 25 to 28
17
Thermal Diffusivity, mm2/s 11
29
Thermal Shock Resistance, points 25 to 29
16

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Carbon (C), % 0.32 to 0.38
0
Chromium (Cr), % 1.4 to 1.7
0
Copper (Cu), % 0
58 to 62
Iron (Fe), % 94.2 to 96.1
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.6 to 1.0
0 to 0.010
Molybdenum (Mo), % 0.15 to 0.35
0
Nickel (Ni), % 1.4 to 1.7
0 to 1.5
Phosphorus (P), % 0 to 0.025
0 to 0.010
Silicon (Si), % 0 to 0.6
0 to 0.25
Sulfur (S), % 0 to 0.030
0.1 to 0.65
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7