MakeItFrom.com
Menu (ESC)

EN 1.6579 Steel vs. C96200 Copper-nickel

EN 1.6579 steel belongs to the iron alloys classification, while C96200 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.6579 steel and the bottom bar is C96200 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 11 to 14
23
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
46
Tensile Strength: Ultimate (UTS), MPa 850 to 980
350
Tensile Strength: Yield (Proof), MPa 600 to 910
190

Thermal Properties

Latent Heat of Fusion, J/g 250
220
Maximum Temperature: Mechanical, °C 440
220
Melting Completion (Liquidus), °C 1460
1150
Melting Onset (Solidus), °C 1410
1100
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
45
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
11

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
36
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.7
3.8
Embodied Energy, MJ/kg 22
58
Embodied Water, L/kg 56
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 120
68
Resilience: Unit (Modulus of Resilience), kJ/m3 950 to 2210
150
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 30 to 35
11
Strength to Weight: Bending, points 25 to 28
13
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 25 to 29
12

Alloy Composition

Carbon (C), % 0.32 to 0.38
0 to 0.1
Chromium (Cr), % 1.4 to 1.7
0
Copper (Cu), % 0
83.6 to 90
Iron (Fe), % 94.2 to 96.1
1.0 to 1.8
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0.6 to 1.0
0 to 1.5
Molybdenum (Mo), % 0.15 to 0.35
0
Nickel (Ni), % 1.4 to 1.7
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.020
Residuals, % 0
0 to 0.5