MakeItFrom.com
Menu (ESC)

EN 1.6580 Steel vs. 6101B Aluminum

EN 1.6580 steel belongs to the iron alloys classification, while 6101B aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.6580 steel and the bottom bar is 6101B aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 11 to 19
9.1 to 13
Fatigue Strength, MPa 310 to 610
62 to 70
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 450 to 700
120 to 150
Tensile Strength: Ultimate (UTS), MPa 720 to 1170
190 to 250
Tensile Strength: Yield (Proof), MPa 460 to 990
140 to 180

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 450
160
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
630
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 40
210
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
57
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
190

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 1.8
8.3
Embodied Energy, MJ/kg 23
150
Embodied Water, L/kg 59
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
20 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 2590
140 to 240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 26 to 41
20 to 25
Strength to Weight: Bending, points 23 to 31
27 to 32
Thermal Diffusivity, mm2/s 11
87
Thermal Shock Resistance, points 21 to 34
8.5 to 11

Alloy Composition

Aluminum (Al), % 0
98.2 to 99.3
Carbon (C), % 0.26 to 0.34
0
Chromium (Cr), % 1.8 to 2.2
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 93.7 to 95.5
0.1 to 0.3
Magnesium (Mg), % 0
0.35 to 0.6
Manganese (Mn), % 0.3 to 0.6
0 to 0.050
Molybdenum (Mo), % 0.3 to 0.5
0
Nickel (Ni), % 1.8 to 2.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.4
0.3 to 0.6
Sulfur (S), % 0 to 0.035
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.1