MakeItFrom.com
Menu (ESC)

EN 1.6580 Steel vs. EN 1.7230 Steel

Both EN 1.6580 steel and EN 1.7230 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.6580 steel and the bottom bar is EN 1.7230 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220 to 350
220 to 270
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 19
11 to 12
Fatigue Strength, MPa 310 to 610
320 to 460
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 720 to 1170
720 to 910
Tensile Strength: Yield (Proof), MPa 460 to 990
510 to 740

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 450
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
44
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
2.4
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.8
1.5
Embodied Energy, MJ/kg 23
20
Embodied Water, L/kg 59
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
79 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 2590
700 to 1460
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 26 to 41
26 to 32
Strength to Weight: Bending, points 23 to 31
23 to 27
Thermal Diffusivity, mm2/s 11
12
Thermal Shock Resistance, points 21 to 34
21 to 27

Alloy Composition

Carbon (C), % 0.26 to 0.34
0.3 to 0.37
Chromium (Cr), % 1.8 to 2.2
0.8 to 1.2
Iron (Fe), % 93.7 to 95.5
96.7 to 98.3
Manganese (Mn), % 0.3 to 0.6
0.5 to 0.8
Molybdenum (Mo), % 0.3 to 0.5
0.15 to 0.3
Nickel (Ni), % 1.8 to 2.2
0
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.6
Sulfur (S), % 0 to 0.035
0 to 0.030