MakeItFrom.com
Menu (ESC)

EN 1.6580 Steel vs. CC496K Bronze

EN 1.6580 steel belongs to the iron alloys classification, while CC496K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.6580 steel and the bottom bar is CC496K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220 to 350
72
Elastic (Young's, Tensile) Modulus, GPa 190
97
Elongation at Break, % 11 to 19
8.6
Poisson's Ratio 0.29
0.35
Shear Modulus, GPa 73
36
Tensile Strength: Ultimate (UTS), MPa 720 to 1170
210
Tensile Strength: Yield (Proof), MPa 460 to 990
99

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 450
140
Melting Completion (Liquidus), °C 1460
900
Melting Onset (Solidus), °C 1420
820
Specific Heat Capacity, J/kg-K 470
340
Thermal Conductivity, W/m-K 40
52
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
11

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
31
Density, g/cm3 7.9
9.2
Embodied Carbon, kg CO2/kg material 1.8
3.3
Embodied Energy, MJ/kg 23
52
Embodied Water, L/kg 59
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
15
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 2590
50
Stiffness to Weight: Axial, points 13
5.9
Stiffness to Weight: Bending, points 24
17
Strength to Weight: Axial, points 26 to 41
6.5
Strength to Weight: Bending, points 23 to 31
8.6
Thermal Diffusivity, mm2/s 11
17
Thermal Shock Resistance, points 21 to 34
8.1

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0.26 to 0.34
0
Chromium (Cr), % 1.8 to 2.2
0
Copper (Cu), % 0
72 to 79.5
Iron (Fe), % 93.7 to 95.5
0 to 0.25
Lead (Pb), % 0
13 to 17
Manganese (Mn), % 0.3 to 0.6
0 to 0.2
Molybdenum (Mo), % 0.3 to 0.5
0
Nickel (Ni), % 1.8 to 2.2
0.5 to 2.0
Phosphorus (P), % 0 to 0.035
0 to 0.1
Silicon (Si), % 0 to 0.4
0 to 0.010
Sulfur (S), % 0 to 0.035
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 2.0