MakeItFrom.com
Menu (ESC)

EN 1.6580 Steel vs. Grade 12 Titanium

EN 1.6580 steel belongs to the iron alloys classification, while grade 12 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.6580 steel and the bottom bar is grade 12 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220 to 350
170
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 19
21
Fatigue Strength, MPa 310 to 610
280
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
39
Shear Strength, MPa 450 to 700
330
Tensile Strength: Ultimate (UTS), MPa 720 to 1170
530
Tensile Strength: Yield (Proof), MPa 460 to 990
410

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 450
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 40
21
Thermal Expansion, µm/m-K 13
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
6.6

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
37
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 1.8
31
Embodied Energy, MJ/kg 23
500
Embodied Water, L/kg 59
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 2590
770
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 26 to 41
32
Strength to Weight: Bending, points 23 to 31
32
Thermal Diffusivity, mm2/s 11
8.5
Thermal Shock Resistance, points 21 to 34
37

Alloy Composition

Carbon (C), % 0.26 to 0.34
0 to 0.080
Chromium (Cr), % 1.8 to 2.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 93.7 to 95.5
0 to 0.3
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.3 to 0.5
0.2 to 0.4
Nickel (Ni), % 1.8 to 2.2
0.6 to 0.9
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.035
0
Titanium (Ti), % 0
97.6 to 99.2
Residuals, % 0
0 to 0.4