MakeItFrom.com
Menu (ESC)

EN 1.6580 Steel vs. C15900 Copper

EN 1.6580 steel belongs to the iron alloys classification, while C15900 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.6580 steel and the bottom bar is C15900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 19
6.5
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Shear Strength, MPa 450 to 700
420
Tensile Strength: Ultimate (UTS), MPa 720 to 1170
720
Tensile Strength: Yield (Proof), MPa 460 to 990
240

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 450
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 40
280
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
48
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
49

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
30
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 1.8
2.8
Embodied Energy, MJ/kg 23
45
Embodied Water, L/kg 59
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
37
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 2590
260
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 26 to 41
23
Strength to Weight: Bending, points 23 to 31
20
Thermal Diffusivity, mm2/s 11
80
Thermal Shock Resistance, points 21 to 34
26

Alloy Composition

Aluminum (Al), % 0
0.76 to 0.84
Carbon (C), % 0.26 to 0.34
0.27 to 0.33
Chromium (Cr), % 1.8 to 2.2
0
Copper (Cu), % 0
97.5 to 97.9
Iron (Fe), % 93.7 to 95.5
0 to 0.040
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.3 to 0.5
0
Nickel (Ni), % 1.8 to 2.2
0
Oxygen (O), % 0
0.4 to 0.54
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.035
0
Titanium (Ti), % 0
0.66 to 0.74