MakeItFrom.com
Menu (ESC)

EN 1.6580 Steel vs. C65400 Bronze

EN 1.6580 steel belongs to the iron alloys classification, while C65400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.6580 steel and the bottom bar is C65400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 19
2.6 to 47
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Shear Strength, MPa 450 to 700
350 to 530
Tensile Strength: Ultimate (UTS), MPa 720 to 1170
500 to 1060
Tensile Strength: Yield (Proof), MPa 460 to 990
170 to 910

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 450
200
Melting Completion (Liquidus), °C 1460
1020
Melting Onset (Solidus), °C 1420
960
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 40
36
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
31
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 1.8
2.8
Embodied Energy, MJ/kg 23
45
Embodied Water, L/kg 59
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
10 to 480
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 2590
130 to 3640
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 26 to 41
16 to 34
Strength to Weight: Bending, points 23 to 31
16 to 27
Thermal Diffusivity, mm2/s 11
10
Thermal Shock Resistance, points 21 to 34
18 to 39

Alloy Composition

Carbon (C), % 0.26 to 0.34
0
Chromium (Cr), % 1.8 to 2.2
0.010 to 0.12
Copper (Cu), % 0
93.8 to 96.1
Iron (Fe), % 93.7 to 95.5
0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.3 to 0.5
0
Nickel (Ni), % 1.8 to 2.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.4
2.7 to 3.4
Sulfur (S), % 0 to 0.035
0
Tin (Sn), % 0
1.2 to 1.9
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.2