MakeItFrom.com
Menu (ESC)

EN 1.6587 Steel vs. C96300 Copper-nickel

EN 1.6587 steel belongs to the iron alloys classification, while C96300 copper-nickel belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.6587 steel and the bottom bar is C96300 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 220
150
Elastic (Young's, Tensile) Modulus, GPa 190
130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
49
Tensile Strength: Ultimate (UTS), MPa 520 to 1420
580

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 440
240
Melting Completion (Liquidus), °C 1460
1200
Melting Onset (Solidus), °C 1420
1150
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 41
37
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
6.1

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
42
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.7
5.1
Embodied Energy, MJ/kg 22
76
Embodied Water, L/kg 58
290

Common Calculations

Stiffness to Weight: Axial, points 13
8.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 18 to 50
18
Strength to Weight: Bending, points 18 to 36
17
Thermal Diffusivity, mm2/s 11
10
Thermal Shock Resistance, points 15 to 42
20

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Carbon (C), % 0.15 to 0.21
0 to 0.15
Chromium (Cr), % 1.5 to 1.8
0
Copper (Cu), % 0 to 0.3
72.3 to 80.8
Iron (Fe), % 94.4 to 96.4
0.5 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0.5 to 0.9
0.25 to 1.5
Molybdenum (Mo), % 0.25 to 0.35
0
Nickel (Ni), % 1.4 to 1.7
18 to 22
Niobium (Nb), % 0
0.5 to 1.5
Oxygen (O), % 0 to 0.0020
0
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.020
Residuals, % 0
0 to 0.5