MakeItFrom.com
Menu (ESC)

EN 1.6771 Steel vs. Grade 29 Titanium

EN 1.6771 steel belongs to the iron alloys classification, while grade 29 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.6771 steel and the bottom bar is grade 29 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 8.0 to 8.7
6.8 to 11
Fatigue Strength, MPa 440 to 680
460 to 510
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 930 to 1180
930 to 940
Tensile Strength: Yield (Proof), MPa 740 to 1140
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 440
340
Melting Completion (Liquidus), °C 1460
1610
Melting Onset (Solidus), °C 1420
1560
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 46
7.3
Thermal Expansion, µm/m-K 13
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
36
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 1.9
39
Embodied Energy, MJ/kg 25
640
Embodied Water, L/kg 58
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75 to 93
62 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 1460 to 3450
3420 to 3540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 33 to 41
58 to 59
Strength to Weight: Bending, points 27 to 31
47 to 48
Thermal Diffusivity, mm2/s 13
2.9
Thermal Shock Resistance, points 27 to 35
68 to 69

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0.27 to 0.33
0 to 0.080
Chromium (Cr), % 0.8 to 1.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 92.2 to 95
0 to 0.25
Manganese (Mn), % 0.6 to 1.0
0
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 3.0 to 4.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.030
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
88 to 90.9
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4

Comparable Variants