MakeItFrom.com
Menu (ESC)

EN 1.6771 Steel vs. Grade C-2 Titanium

EN 1.6771 steel belongs to the iron alloys classification, while grade C-2 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.6771 steel and the bottom bar is grade C-2 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 350
180
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 8.0 to 8.7
17
Fatigue Strength, MPa 440 to 680
200
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 930 to 1180
390
Tensile Strength: Yield (Proof), MPa 740 to 1140
310

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 440
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 46
21
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
37
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 1.9
31
Embodied Energy, MJ/kg 25
510
Embodied Water, L/kg 58
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75 to 93
61
Resilience: Unit (Modulus of Resilience), kJ/m3 1460 to 3450
460
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 33 to 41
24
Strength to Weight: Bending, points 27 to 31
26
Thermal Diffusivity, mm2/s 13
8.8
Thermal Shock Resistance, points 27 to 35
30

Alloy Composition

Carbon (C), % 0.27 to 0.33
0 to 0.1
Chromium (Cr), % 0.8 to 1.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 92.2 to 95
0 to 0.2
Manganese (Mn), % 0.6 to 1.0
0
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 3.0 to 4.0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
98.8 to 100
Residuals, % 0
0 to 0.4