MakeItFrom.com
Menu (ESC)

EN 1.6771 Steel vs. C46400 Brass

EN 1.6771 steel belongs to the iron alloys classification, while C46400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.6771 steel and the bottom bar is C46400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 8.0 to 8.7
17 to 40
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 930 to 1180
400 to 500
Tensile Strength: Yield (Proof), MPa 740 to 1140
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 440
120
Melting Completion (Liquidus), °C 1460
900
Melting Onset (Solidus), °C 1420
890
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 46
120
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
26
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
29

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
23
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 1.9
2.7
Embodied Energy, MJ/kg 25
47
Embodied Water, L/kg 58
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75 to 93
76 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 1460 to 3450
120 to 500
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 33 to 41
14 to 17
Strength to Weight: Bending, points 27 to 31
15 to 17
Thermal Diffusivity, mm2/s 13
38
Thermal Shock Resistance, points 27 to 35
13 to 16

Alloy Composition

Carbon (C), % 0.27 to 0.33
0
Chromium (Cr), % 0.8 to 1.2
0
Copper (Cu), % 0
59 to 62
Iron (Fe), % 92.2 to 95
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.6 to 1.0
0
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 3.0 to 4.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
36.3 to 40.5
Residuals, % 0
0 to 0.4

Comparable Variants