MakeItFrom.com
Menu (ESC)

EN 1.6771 Steel vs. C85900 Brass

EN 1.6771 steel belongs to the iron alloys classification, while C85900 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.6771 steel and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 350
85
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 8.0 to 8.7
30
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 930 to 1180
460
Tensile Strength: Yield (Proof), MPa 740 to 1140
190

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 440
130
Melting Completion (Liquidus), °C 1460
830
Melting Onset (Solidus), °C 1420
790
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 46
89
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
25
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
28

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
24
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 1.9
2.9
Embodied Energy, MJ/kg 25
49
Embodied Water, L/kg 58
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75 to 93
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1460 to 3450
170
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 33 to 41
16
Strength to Weight: Bending, points 27 to 31
17
Thermal Diffusivity, mm2/s 13
29
Thermal Shock Resistance, points 27 to 35
16

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Carbon (C), % 0.27 to 0.33
0
Chromium (Cr), % 0.8 to 1.2
0
Copper (Cu), % 0
58 to 62
Iron (Fe), % 92.2 to 95
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.6 to 1.0
0 to 0.010
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 3.0 to 4.0
0 to 1.5
Phosphorus (P), % 0 to 0.030
0 to 0.010
Silicon (Si), % 0 to 0.6
0 to 0.25
Sulfur (S), % 0 to 0.020
0.1 to 0.65
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7