MakeItFrom.com
Menu (ESC)

EN 1.6781 Steel vs. C65400 Bronze

EN 1.6781 steel belongs to the iron alloys classification, while C65400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.6781 steel and the bottom bar is C65400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
2.6 to 47
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 830
500 to 1060
Tensile Strength: Yield (Proof), MPa 680
170 to 910

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Maximum Temperature: Mechanical, °C 450
200
Melting Completion (Liquidus), °C 1460
1020
Melting Onset (Solidus), °C 1420
960
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 44
36
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.9
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.1
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
31
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 1.9
2.8
Embodied Energy, MJ/kg 25
45
Embodied Water, L/kg 60
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
10 to 480
Resilience: Unit (Modulus of Resilience), kJ/m3 1220
130 to 3640
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 29
16 to 34
Strength to Weight: Bending, points 25
16 to 27
Thermal Diffusivity, mm2/s 12
10
Thermal Shock Resistance, points 24
18 to 39

Alloy Composition

Carbon (C), % 0.15 to 0.19
0
Chromium (Cr), % 1.3 to 1.8
0.010 to 0.12
Copper (Cu), % 0
93.8 to 96.1
Iron (Fe), % 92.6 to 94.6
0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.55 to 0.8
0
Molybdenum (Mo), % 0.45 to 0.6
0
Nickel (Ni), % 3.0 to 3.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
2.7 to 3.4
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.2 to 1.9
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.2