MakeItFrom.com
Menu (ESC)

EN 1.6920 Steel vs. SAE-AISI 8645 Steel

Both EN 1.6920 steel and SAE-AISI 8645 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.6920 steel and the bottom bar is SAE-AISI 8645 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
180 to 200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
12 to 23
Fatigue Strength, MPa 290
280 to 350
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 400
380 to 400
Tensile Strength: Ultimate (UTS), MPa 640
600 to 670
Tensile Strength: Yield (Proof), MPa 420
390 to 560

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 420
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
2.6
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
1.5
Embodied Energy, MJ/kg 23
20
Embodied Water, L/kg 52
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
77 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 470
420 to 840
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
21 to 24
Strength to Weight: Bending, points 21
20 to 22
Thermal Diffusivity, mm2/s 10
10
Thermal Shock Resistance, points 19
18 to 20

Alloy Composition

Carbon (C), % 0 to 0.17
0.43 to 0.48
Chromium (Cr), % 0.5 to 1.0
0.4 to 0.6
Iron (Fe), % 95.7 to 98
96.5 to 97.7
Manganese (Mn), % 1.0 to 1.5
0.75 to 1.0
Molybdenum (Mo), % 0.2 to 0.35
0.15 to 0.25
Nickel (Ni), % 0.3 to 0.7
0.4 to 0.7
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0 to 0.4
0.15 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.040
Vanadium (V), % 0.050 to 0.1
0