MakeItFrom.com
Menu (ESC)

EN 1.6920 Steel vs. C71520 Copper-nickel

EN 1.6920 steel belongs to the iron alloys classification, while C71520 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.6920 steel and the bottom bar is C71520 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 19
10 to 45
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
51
Shear Strength, MPa 400
250 to 340
Tensile Strength: Ultimate (UTS), MPa 640
370 to 570
Tensile Strength: Yield (Proof), MPa 420
140 to 430

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 420
260
Melting Completion (Liquidus), °C 1460
1170
Melting Onset (Solidus), °C 1420
1120
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 39
32
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
5.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
5.8

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
40
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.7
5.0
Embodied Energy, MJ/kg 23
73
Embodied Water, L/kg 52
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
54 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 470
67 to 680
Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22
12 to 18
Strength to Weight: Bending, points 21
13 to 17
Thermal Diffusivity, mm2/s 10
8.9
Thermal Shock Resistance, points 19
12 to 19

Alloy Composition

Carbon (C), % 0 to 0.17
0 to 0.050
Chromium (Cr), % 0.5 to 1.0
0
Copper (Cu), % 0
65 to 71.6
Iron (Fe), % 95.7 to 98
0.4 to 1.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 1.0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0.2 to 0.35
0
Nickel (Ni), % 0.3 to 0.7
28 to 33
Phosphorus (P), % 0 to 0.025
0 to 0.2
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.015
0 to 0.020
Vanadium (V), % 0.050 to 0.1
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5