MakeItFrom.com
Menu (ESC)

EN 1.6920 Steel vs. S44660 Stainless Steel

Both EN 1.6920 steel and S44660 stainless steel are iron alloys. They have 68% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.6920 steel and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
210
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 19
20
Fatigue Strength, MPa 290
330
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
81
Shear Strength, MPa 400
410
Tensile Strength: Ultimate (UTS), MPa 640
660
Tensile Strength: Yield (Proof), MPa 420
510

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 420
1100
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
17
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
21
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.7
4.3
Embodied Energy, MJ/kg 23
61
Embodied Water, L/kg 52
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 470
640
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
24
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 10
4.5
Thermal Shock Resistance, points 19
21

Alloy Composition

Carbon (C), % 0 to 0.17
0 to 0.030
Chromium (Cr), % 0.5 to 1.0
25 to 28
Iron (Fe), % 95.7 to 98
60.4 to 71
Manganese (Mn), % 1.0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0.2 to 0.35
3.0 to 4.0
Nickel (Ni), % 0.3 to 0.7
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.0
Vanadium (V), % 0.050 to 0.1
0