MakeItFrom.com
Menu (ESC)

EN 1.6957 Steel vs. EN 1.7379 Steel

Both EN 1.6957 steel and EN 1.7379 steel are iron alloys. Both are furnished in the quenched and tempered condition. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.6957 steel and the bottom bar is EN 1.7379 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 18
21
Fatigue Strength, MPa 530
320
Impact Strength: V-Notched Charpy, J 71
45
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
74
Tensile Strength: Ultimate (UTS), MPa 930
670
Tensile Strength: Yield (Proof), MPa 780
460

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 450
460
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 47
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.9
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 9.1
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
3.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.1
1.8
Embodied Energy, MJ/kg 29
23
Embodied Water, L/kg 60
59

Common Calculations

PREN (Pitting Resistance) 2.7
5.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1630
550
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 33
24
Strength to Weight: Bending, points 27
22
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 27
19

Alloy Composition

Carbon (C), % 0.22 to 0.32
0.13 to 0.2
Chromium (Cr), % 1.2 to 1.8
2.0 to 2.5
Iron (Fe), % 92.7 to 94.7
94.5 to 96.5
Manganese (Mn), % 0.15 to 0.4
0.5 to 0.9
Molybdenum (Mo), % 0.25 to 0.45
0.9 to 1.2
Nickel (Ni), % 3.4 to 4.0
0
Phosphorus (P), % 0 to 0.010
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.6
Sulfur (S), % 0 to 0.0070
0 to 0.030
Vanadium (V), % 0.050 to 0.15
0