MakeItFrom.com
Menu (ESC)

EN 1.6957 Steel vs. EN 1.7380 Steel

Both EN 1.6957 steel and EN 1.7380 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.6957 steel and the bottom bar is EN 1.7380 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280
160 to 170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 18
19 to 20
Fatigue Strength, MPa 530
200 to 230
Impact Strength: V-Notched Charpy, J 71
31 to 35
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
74
Shear Strength, MPa 570
330 to 350
Tensile Strength: Ultimate (UTS), MPa 930
540 to 550
Tensile Strength: Yield (Proof), MPa 780
290 to 330

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 450
460
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 47
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.9
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 9.1
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
3.8
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.1
1.8
Embodied Energy, MJ/kg 29
23
Embodied Water, L/kg 60
59

Common Calculations

PREN (Pitting Resistance) 2.7
5.6
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
87 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 1630
230 to 280
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 33
19 to 20
Strength to Weight: Bending, points 27
19
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 27
15 to 16

Alloy Composition

Carbon (C), % 0.22 to 0.32
0.080 to 0.14
Chromium (Cr), % 1.2 to 1.8
2.0 to 2.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 92.7 to 94.7
94.6 to 96.6
Manganese (Mn), % 0.15 to 0.4
0.4 to 0.8
Molybdenum (Mo), % 0.25 to 0.45
0.9 to 1.1
Nickel (Ni), % 3.4 to 4.0
0
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.010
0 to 0.020
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0 to 0.0070
0 to 0.010
Vanadium (V), % 0.050 to 0.15
0