MakeItFrom.com
Menu (ESC)

EN 1.6957 Steel vs. EN 1.8888 Steel

Both EN 1.6957 steel and EN 1.8888 steel are iron alloys. Both are furnished in the quenched and tempered condition. They have a very high 97% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.6957 steel and the bottom bar is EN 1.8888 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280
250
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 18
16
Fatigue Strength, MPa 530
470
Impact Strength: V-Notched Charpy, J 71
110
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 570
510
Tensile Strength: Ultimate (UTS), MPa 930
830
Tensile Strength: Yield (Proof), MPa 780
720

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 450
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 47
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.9
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 9.1
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
3.7
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.1
1.9
Embodied Energy, MJ/kg 29
26
Embodied Water, L/kg 60
54

Common Calculations

PREN (Pitting Resistance) 2.7
2.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1630
1370
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 33
29
Strength to Weight: Bending, points 27
25
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 27
24

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0.22 to 0.32
0 to 0.2
Chromium (Cr), % 1.2 to 1.8
0 to 1.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 92.7 to 94.7
91.9 to 100
Manganese (Mn), % 0.15 to 0.4
0 to 1.7
Molybdenum (Mo), % 0.25 to 0.45
0 to 0.7
Nickel (Ni), % 3.4 to 4.0
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.010
0 to 0.020
Silicon (Si), % 0 to 0.15
0 to 0.8
Sulfur (S), % 0 to 0.0070
0 to 0.0050
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0.050 to 0.15
0 to 0.12
Zirconium (Zr), % 0
0 to 0.15