MakeItFrom.com
Menu (ESC)

EN 1.6958 Steel vs. S40910 Stainless Steel

Both EN 1.6958 steel and S40910 stainless steel are iron alloys. They have 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.6958 steel and the bottom bar is S40910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 340
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
23
Fatigue Strength, MPa 700
130
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
75
Shear Strength, MPa 700
270
Tensile Strength: Ultimate (UTS), MPa 1140
430
Tensile Strength: Yield (Proof), MPa 1070
190

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 450
710
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 47
26
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.1
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
7.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.0
2.0
Embodied Energy, MJ/kg 27
28
Embodied Water, L/kg 60
94

Common Calculations

PREN (Pitting Resistance) 2.9
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
80
Resilience: Unit (Modulus of Resilience), kJ/m3 3050
94
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 40
16
Strength to Weight: Bending, points 31
16
Thermal Diffusivity, mm2/s 13
6.9
Thermal Shock Resistance, points 39
16

Alloy Composition

Aluminum (Al), % 0.0050 to 0.050
0
Carbon (C), % 0.25 to 0.3
0 to 0.030
Chromium (Cr), % 1.2 to 1.7
10.5 to 11.7
Iron (Fe), % 92.6 to 94.5
85 to 89.5
Manganese (Mn), % 0.2 to 0.5
0 to 1.0
Molybdenum (Mo), % 0.35 to 0.55
0
Nickel (Ni), % 3.3 to 3.8
0 to 0.5
Niobium (Nb), % 0
0 to 0.17
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0.15 to 0.3
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0
0 to 0.5
Vanadium (V), % 0 to 0.12
0