MakeItFrom.com
Menu (ESC)

EN 1.6982 Stainless Steel vs. 2117 Aluminum

EN 1.6982 stainless steel belongs to the iron alloys classification, while 2117 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.6982 stainless steel and the bottom bar is 2117 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 17
26
Fatigue Strength, MPa 350
95
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 800
300
Tensile Strength: Yield (Proof), MPa 570
170

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 770
220
Melting Completion (Liquidus), °C 1440
650
Melting Onset (Solidus), °C 1400
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 25
150
Thermal Expansion, µm/m-K 10
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
40
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
120

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 2.4
8.2
Embodied Energy, MJ/kg 33
150
Embodied Water, L/kg 110
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
64
Resilience: Unit (Modulus of Resilience), kJ/m3 820
190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 28
28
Strength to Weight: Bending, points 25
33
Thermal Diffusivity, mm2/s 6.6
59
Thermal Shock Resistance, points 29
12

Alloy Composition

Aluminum (Al), % 0
91 to 97.6
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 12 to 13.5
0 to 0.1
Copper (Cu), % 0
2.2 to 4.5
Iron (Fe), % 78.7 to 84.5
0 to 0.7
Magnesium (Mg), % 0
0.2 to 1.0
Manganese (Mn), % 0 to 1.0
0.4 to 1.0
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 3.5 to 5.0
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0.2 to 0.8
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15