MakeItFrom.com
Menu (ESC)

EN 1.6982 Stainless Steel vs. C355.0 Aluminum

EN 1.6982 stainless steel belongs to the iron alloys classification, while C355.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.6982 stainless steel and the bottom bar is C355.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 17
2.7 to 3.8
Fatigue Strength, MPa 350
76 to 84
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 800
290 to 310
Tensile Strength: Yield (Proof), MPa 570
200 to 230

Thermal Properties

Latent Heat of Fusion, J/g 280
470
Maximum Temperature: Mechanical, °C 770
170
Melting Completion (Liquidus), °C 1440
620
Melting Onset (Solidus), °C 1400
570
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 25
150
Thermal Expansion, µm/m-K 10
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
39
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
130

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.4
8.0
Embodied Energy, MJ/kg 33
150
Embodied Water, L/kg 110
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
7.5 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 820
290 to 380
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 28
30 to 32
Strength to Weight: Bending, points 25
36 to 37
Thermal Diffusivity, mm2/s 6.6
60
Thermal Shock Resistance, points 29
13 to 14

Alloy Composition

Aluminum (Al), % 0
91.7 to 94.1
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 12 to 13.5
0
Copper (Cu), % 0
1.0 to 1.5
Iron (Fe), % 78.7 to 84.5
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 3.5 to 5.0
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
4.5 to 5.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15