MakeItFrom.com
Menu (ESC)

EN 1.6982 Stainless Steel vs. EN AC-21000 Aluminum

EN 1.6982 stainless steel belongs to the iron alloys classification, while EN AC-21000 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.6982 stainless steel and the bottom bar is EN AC-21000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 17
6.7
Fatigue Strength, MPa 350
100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 800
340
Tensile Strength: Yield (Proof), MPa 570
240

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 770
170
Melting Completion (Liquidus), °C 1440
670
Melting Onset (Solidus), °C 1400
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 25
130
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
34
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
100

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 2.4
8.0
Embodied Energy, MJ/kg 33
150
Embodied Water, L/kg 110
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
21
Resilience: Unit (Modulus of Resilience), kJ/m3 820
390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 28
32
Strength to Weight: Bending, points 25
36
Thermal Diffusivity, mm2/s 6.6
49
Thermal Shock Resistance, points 29
15

Alloy Composition

Aluminum (Al), % 0
93.4 to 95.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 12 to 13.5
0
Copper (Cu), % 0
4.2 to 5.0
Iron (Fe), % 78.7 to 84.5
0 to 0.35
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 3.5 to 5.0
0 to 0.050
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.1