MakeItFrom.com
Menu (ESC)

EN 1.6982 Stainless Steel vs. C70700 Copper-nickel

EN 1.6982 stainless steel belongs to the iron alloys classification, while C70700 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.6982 stainless steel and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 17
39
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
46
Tensile Strength: Ultimate (UTS), MPa 800
320
Tensile Strength: Yield (Proof), MPa 570
110

Thermal Properties

Latent Heat of Fusion, J/g 280
220
Maximum Temperature: Mechanical, °C 770
220
Melting Completion (Liquidus), °C 1440
1120
Melting Onset (Solidus), °C 1400
1060
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 25
59
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
11
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
34
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.4
3.4
Embodied Energy, MJ/kg 33
52
Embodied Water, L/kg 110
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
100
Resilience: Unit (Modulus of Resilience), kJ/m3 820
51
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28
10
Strength to Weight: Bending, points 25
12
Thermal Diffusivity, mm2/s 6.6
17
Thermal Shock Resistance, points 29
12

Alloy Composition

Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 12 to 13.5
0
Copper (Cu), % 0
88.5 to 90.5
Iron (Fe), % 78.7 to 84.5
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 3.5 to 5.0
9.5 to 10.5
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Residuals, % 0
0 to 0.5