MakeItFrom.com
Menu (ESC)

EN 1.6982 Stainless Steel vs. C87700 Bronze

EN 1.6982 stainless steel belongs to the iron alloys classification, while C87700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.6982 stainless steel and the bottom bar is C87700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
3.6
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 800
300
Tensile Strength: Yield (Proof), MPa 570
120

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 770
180
Melting Completion (Liquidus), °C 1440
980
Melting Onset (Solidus), °C 1400
900
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 25
120
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
45
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
48

Otherwise Unclassified Properties

Base Metal Price, % relative 10
29
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 2.4
2.7
Embodied Energy, MJ/kg 33
45
Embodied Water, L/kg 110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
8.6
Resilience: Unit (Modulus of Resilience), kJ/m3 820
64
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28
9.8
Strength to Weight: Bending, points 25
12
Thermal Diffusivity, mm2/s 6.6
34
Thermal Shock Resistance, points 29
11

Alloy Composition

Antimony (Sb), % 0
0 to 0.1
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 12 to 13.5
0
Copper (Cu), % 0
87.5 to 90.5
Iron (Fe), % 78.7 to 84.5
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.0
0 to 0.8
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 3.5 to 5.0
0 to 0.25
Phosphorus (P), % 0 to 0.035
0 to 0.15
Silicon (Si), % 0 to 1.0
2.5 to 3.5
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 2.0
Zinc (Zn), % 0
7.0 to 9.0
Residuals, % 0
0 to 0.8