MakeItFrom.com
Menu (ESC)

EN 1.7035 Steel vs. EN 1.0644 Steel

Both EN 1.7035 steel and EN 1.0644 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.7035 steel and the bottom bar is EN 1.0644 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 290
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 530 to 1850
690

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 420
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 46
47
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
2.4
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.8
Embodied Energy, MJ/kg 19
24
Embodied Water, L/kg 50
50

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19 to 66
24
Strength to Weight: Bending, points 19 to 43
22
Thermal Diffusivity, mm2/s 12
13
Thermal Shock Resistance, points 16 to 54
22

Alloy Composition

Aluminum (Al), % 0
0.010 to 0.050
Carbon (C), % 0.38 to 0.45
0.16 to 0.22
Chromium (Cr), % 0.9 to 1.2
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 97 to 98.1
96.1 to 98.4
Manganese (Mn), % 0.6 to 0.9
1.3 to 1.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0 to 0.4
0.1 to 0.5
Sulfur (S), % 0 to 0.035
0 to 0.035
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0.080 to 0.15