MakeItFrom.com
Menu (ESC)

EN 1.7076 Steel vs. CC334G Bronze

EN 1.7076 steel belongs to the iron alloys classification, while CC334G bronze belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7076 steel and the bottom bar is CC334G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140 to 170
210
Elastic (Young's, Tensile) Modulus, GPa 190
120
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
45
Tensile Strength: Ultimate (UTS), MPa 470 to 1700
810

Thermal Properties

Latent Heat of Fusion, J/g 250
240
Maximum Temperature: Mechanical, °C 420
240
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1020
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 45
41
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
29
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.4
3.6
Embodied Energy, MJ/kg 19
59
Embodied Water, L/kg 51
390

Common Calculations

Stiffness to Weight: Axial, points 13
8.1
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 17 to 60
28
Strength to Weight: Bending, points 17 to 40
24
Thermal Diffusivity, mm2/s 12
11
Thermal Shock Resistance, points 14 to 50
28

Alloy Composition

Aluminum (Al), % 0
10 to 12
Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.3 to 0.34
0
Chromium (Cr), % 0.9 to 1.2
0
Copper (Cu), % 0 to 0.25
72 to 84.5
Iron (Fe), % 97 to 98.2
3.0 to 7.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.6 to 0.9
0 to 2.5
Nickel (Ni), % 0
4.0 to 7.5
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0 to 0.1
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5