MakeItFrom.com
Menu (ESC)

EN 1.7106 Steel vs. 333.0 Aluminum

EN 1.7106 steel belongs to the iron alloys classification, while 333.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.7106 steel and the bottom bar is 333.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 500
90 to 110
Elastic (Young's, Tensile) Modulus, GPa 190
73
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
28
Tensile Strength: Ultimate (UTS), MPa 660 to 2020
230 to 280

Thermal Properties

Latent Heat of Fusion, J/g 280
520
Maximum Temperature: Mechanical, °C 410
170
Melting Completion (Liquidus), °C 1430
590
Melting Onset (Solidus), °C 1390
530
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 46
100 to 140
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
26 to 35
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
83 to 110

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
10
Density, g/cm3 7.7
2.8
Embodied Carbon, kg CO2/kg material 1.5
7.6
Embodied Energy, MJ/kg 20
140
Embodied Water, L/kg 47
1040

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 24 to 73
22 to 27
Strength to Weight: Bending, points 22 to 46
29 to 34
Thermal Diffusivity, mm2/s 13
42 to 57
Thermal Shock Resistance, points 20 to 61
11 to 13

Alloy Composition

Aluminum (Al), % 0
81.8 to 89
Carbon (C), % 0.52 to 0.6
0
Chromium (Cr), % 0.2 to 0.45
0
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 95.9 to 97
0 to 1.0
Magnesium (Mg), % 0
0.050 to 0.5
Manganese (Mn), % 0.7 to 1.0
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 1.6 to 2.0
8.0 to 10
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5