MakeItFrom.com
Menu (ESC)

EN 1.7106 Steel vs. 710.0 Aluminum

EN 1.7106 steel belongs to the iron alloys classification, while 710.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.7106 steel and the bottom bar is 710.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 500
75
Elastic (Young's, Tensile) Modulus, GPa 190
70
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 72
26
Tensile Strength: Ultimate (UTS), MPa 660 to 2020
240 to 250

Thermal Properties

Latent Heat of Fusion, J/g 280
380
Maximum Temperature: Mechanical, °C 410
170
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1390
610
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 46
140
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
35
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
9.5
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 1.5
8.0
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 47
1130

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 24 to 73
23
Strength to Weight: Bending, points 22 to 46
29
Thermal Diffusivity, mm2/s 13
53
Thermal Shock Resistance, points 20 to 61
10 to 11

Alloy Composition

Aluminum (Al), % 0
90.5 to 93.1
Carbon (C), % 0.52 to 0.6
0
Chromium (Cr), % 0.2 to 0.45
0
Copper (Cu), % 0
0.35 to 0.65
Iron (Fe), % 95.9 to 97
0 to 0.5
Magnesium (Mg), % 0
0.6 to 0.8
Manganese (Mn), % 0.7 to 1.0
0 to 0.050
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 1.6 to 2.0
0 to 0.15
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
6.0 to 7.0
Residuals, % 0
0 to 0.15