MakeItFrom.com
Menu (ESC)

EN 1.7106 Steel vs. EN AC-21200 Aluminum

EN 1.7106 steel belongs to the iron alloys classification, while EN AC-21200 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.7106 steel and the bottom bar is EN AC-21200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 500
120 to 130
Elastic (Young's, Tensile) Modulus, GPa 190
71
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
27
Tensile Strength: Ultimate (UTS), MPa 660 to 2020
410 to 440

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 410
170
Melting Completion (Liquidus), °C 1430
660
Melting Onset (Solidus), °C 1390
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 46
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
34
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
100

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
10
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 1.5
8.0
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 47
1150

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 24 to 73
38 to 40
Strength to Weight: Bending, points 22 to 46
41 to 43
Thermal Diffusivity, mm2/s 13
49
Thermal Shock Resistance, points 20 to 61
18 to 19

Alloy Composition

Aluminum (Al), % 0
93.3 to 95.7
Carbon (C), % 0.52 to 0.6
0
Chromium (Cr), % 0.2 to 0.45
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 95.9 to 97
0 to 0.2
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0
0.15 to 0.5
Manganese (Mn), % 0.7 to 1.0
0.2 to 0.5
Nickel (Ni), % 0
0 to 0.050
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 1.6 to 2.0
0 to 0.1
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.1