MakeItFrom.com
Menu (ESC)

EN 1.7106 Steel vs. CC383H Copper-nickel

EN 1.7106 steel belongs to the iron alloys classification, while CC383H copper-nickel belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7106 steel and the bottom bar is CC383H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 500
130
Elastic (Young's, Tensile) Modulus, GPa 190
140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
52
Tensile Strength: Ultimate (UTS), MPa 660 to 2020
490

Thermal Properties

Latent Heat of Fusion, J/g 280
240
Maximum Temperature: Mechanical, °C 410
260
Melting Completion (Liquidus), °C 1430
1180
Melting Onset (Solidus), °C 1390
1130
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 46
29
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
5.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
44
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 1.5
5.7
Embodied Energy, MJ/kg 20
83
Embodied Water, L/kg 47
280

Common Calculations

Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 24 to 73
15
Strength to Weight: Bending, points 22 to 46
16
Thermal Diffusivity, mm2/s 13
8.1
Thermal Shock Resistance, points 20 to 61
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Bismuth (Bi), % 0
0 to 0.010
Boron (B), % 0
0 to 0.010
Cadmium (Cd), % 0
0 to 0.020
Carbon (C), % 0.52 to 0.6
0 to 0.030
Chromium (Cr), % 0.2 to 0.45
0
Copper (Cu), % 0
64 to 69.1
Iron (Fe), % 95.9 to 97
0.5 to 1.5
Lead (Pb), % 0
0 to 0.010
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0.7 to 1.0
0.6 to 1.2
Nickel (Ni), % 0
29 to 31
Niobium (Nb), % 0
0.5 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 0.010
Selenium (Se), % 0
0 to 0.010
Silicon (Si), % 1.6 to 2.0
0.3 to 0.7
Sulfur (S), % 0 to 0.025
0 to 0.010
Tellurium (Te), % 0
0 to 0.010
Zinc (Zn), % 0
0 to 0.5