MakeItFrom.com
Menu (ESC)

EN 1.7106 Steel vs. N10675 Nickel

EN 1.7106 steel belongs to the iron alloys classification, while N10675 nickel belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.7106 steel and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
220
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 72
85
Tensile Strength: Ultimate (UTS), MPa 660 to 2020
860

Thermal Properties

Latent Heat of Fusion, J/g 280
320
Maximum Temperature: Mechanical, °C 410
910
Melting Completion (Liquidus), °C 1430
1420
Melting Onset (Solidus), °C 1390
1370
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 46
11
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
80
Density, g/cm3 7.7
9.3
Embodied Carbon, kg CO2/kg material 1.5
16
Embodied Energy, MJ/kg 20
210
Embodied Water, L/kg 47
280

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 25
22
Strength to Weight: Axial, points 24 to 73
26
Strength to Weight: Bending, points 22 to 46
22
Thermal Diffusivity, mm2/s 13
3.1
Thermal Shock Resistance, points 20 to 61
26

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0.52 to 0.6
0 to 0.010
Chromium (Cr), % 0.2 to 0.45
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 95.9 to 97
1.0 to 3.0
Manganese (Mn), % 0.7 to 1.0
0 to 3.0
Molybdenum (Mo), % 0
27 to 32
Nickel (Ni), % 0
51.3 to 71
Niobium (Nb), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 1.6 to 2.0
0 to 0.1
Sulfur (S), % 0 to 0.025
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1