MakeItFrom.com
Menu (ESC)

EN 1.7108 Steel vs. EN 1.8893 Steel

Both EN 1.7108 steel and EN 1.8893 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.7108 steel and the bottom bar is EN 1.8893 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 510
250
Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Tensile Strength: Ultimate (UTS), MPa 670 to 2070
830

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 410
410
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 46
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
2.9
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.7
Embodied Energy, MJ/kg 20
23
Embodied Water, L/kg 47
51

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24 to 75
29
Strength to Weight: Bending, points 22 to 47
25
Thermal Diffusivity, mm2/s 12
11
Thermal Shock Resistance, points 20 to 63
24

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0.57 to 0.65
0 to 0.2
Chromium (Cr), % 0.2 to 0.45
0 to 0.3
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 95.9 to 96.9
95.6 to 98
Manganese (Mn), % 0.7 to 1.0
1.4 to 1.7
Molybdenum (Mo), % 0
0.3 to 0.45
Nickel (Ni), % 0
0.3 to 0.7
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 1.6 to 2.0
0 to 0.5
Sulfur (S), % 0 to 0.025
0 to 0.025
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12