MakeItFrom.com
Menu (ESC)

EN 1.7117 Steel vs. EN 1.0487 Steel

Both EN 1.7117 steel and EN 1.0487 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.7117 steel and the bottom bar is EN 1.0487 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 480
130
Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Tensile Strength: Ultimate (UTS), MPa 660 to 1930
440

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 420
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 43
49
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
2.3
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.5
Embodied Energy, MJ/kg 21
20
Embodied Water, L/kg 51
49

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24 to 69
15
Strength to Weight: Bending, points 22 to 44
16
Thermal Diffusivity, mm2/s 12
13
Thermal Shock Resistance, points 20 to 58
14

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0.49 to 0.56
0 to 0.16
Chromium (Cr), % 0.7 to 1.0
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 95.2 to 96.4
96.6 to 99.38
Manganese (Mn), % 0.7 to 1.0
0.6 to 1.5
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0.5 to 0.7
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 1.2 to 1.5
0 to 0.4
Sulfur (S), % 0 to 0.025
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050