MakeItFrom.com
Menu (ESC)

EN 1.7131 Steel vs. 7049 Aluminum

EN 1.7131 steel belongs to the iron alloys classification, while 7049 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.7131 steel and the bottom bar is 7049 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140 to 170
140
Elastic (Young's, Tensile) Modulus, GPa 190
70
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 470 to 1390
510 to 530

Thermal Properties

Latent Heat of Fusion, J/g 250
370
Maximum Temperature: Mechanical, °C 420
180
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
480
Specific Heat Capacity, J/kg-K 470
860
Thermal Conductivity, W/m-K 45
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
36
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
110

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
10
Density, g/cm3 7.8
3.1
Embodied Carbon, kg CO2/kg material 1.4
8.1
Embodied Energy, MJ/kg 19
140
Embodied Water, L/kg 51
1110

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 17 to 49
46 to 47
Strength to Weight: Bending, points 17 to 35
46 to 47
Thermal Diffusivity, mm2/s 12
51
Thermal Shock Resistance, points 14 to 41
22 to 23

Alloy Composition

Aluminum (Al), % 0
85.7 to 89.5
Carbon (C), % 0.14 to 0.19
0
Chromium (Cr), % 0.8 to 1.1
0.1 to 0.22
Copper (Cu), % 0 to 0.25
1.2 to 1.9
Iron (Fe), % 96.8 to 98.1
0 to 0.35
Magnesium (Mg), % 0
2.0 to 2.9
Manganese (Mn), % 1.0 to 1.3
0 to 0.2
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0 to 0.25
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
7.2 to 8.2
Residuals, % 0
0 to 0.15