MakeItFrom.com
Menu (ESC)

EN 1.7139 Steel vs. AWS E330

Both EN 1.7139 steel and AWS E330 are iron alloys. They have 49% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7139 steel and the bottom bar is AWS E330.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
76
Tensile Strength: Ultimate (UTS), MPa 480 to 1390
580

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1420
1350
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 44
12
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
31
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.4
5.4
Embodied Energy, MJ/kg 19
75
Embodied Water, L/kg 51
180

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17 to 49
20
Strength to Weight: Bending, points 17 to 35
19
Thermal Diffusivity, mm2/s 12
3.2
Thermal Shock Resistance, points 14 to 41
16

Alloy Composition

Carbon (C), % 0.14 to 0.19
0.18 to 0.25
Chromium (Cr), % 0.8 to 1.1
14 to 17
Copper (Cu), % 0 to 0.25
0 to 0.75
Iron (Fe), % 96.8 to 98
40.7 to 51.8
Manganese (Mn), % 1.0 to 1.3
1.0 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
33 to 37
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0.020 to 0.040
0 to 0.030