MakeItFrom.com
Menu (ESC)

EN 1.7176 Steel vs. EN 1.0491 Steel

Both EN 1.7176 steel and EN 1.0491 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.7176 steel and the bottom bar is EN 1.0491 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 470
130
Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 670 to 2010
440

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 420
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 48
47
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
2.4
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.6
Embodied Energy, MJ/kg 19
21
Embodied Water, L/kg 50
49

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24 to 71
16
Strength to Weight: Bending, points 22 to 45
16
Thermal Diffusivity, mm2/s 13
13
Thermal Shock Resistance, points 20 to 59
14

Alloy Composition

Aluminum (Al), % 0
0 to 0.015
Carbon (C), % 0.52 to 0.59
0 to 0.18
Chromium (Cr), % 0.7 to 1.0
0 to 0.35
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 97 to 98.1
96.1 to 99.55
Manganese (Mn), % 0.7 to 1.0
0.45 to 1.6
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 0
0 to 0.35
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.017
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 0.45
Sulfur (S), % 0 to 0.025
0 to 0.025
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.070