MakeItFrom.com
Menu (ESC)

EN 1.7202 Steel vs. Grade Ti-Pd18 Titanium

EN 1.7202 steel belongs to the iron alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.7202 steel and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Poisson's Ratio 0.29
0.32
Rockwell C Hardness 48 to 56
34
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 530 to 1810
710

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 420
330
Melting Completion (Liquidus), °C 1460
1640
Melting Onset (Solidus), °C 1420
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 46
8.2
Thermal Expansion, µm/m-K 13
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.7

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.5
41
Embodied Energy, MJ/kg 20
670
Embodied Water, L/kg 51
270

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 19 to 64
44
Strength to Weight: Bending, points 19 to 42
39
Thermal Diffusivity, mm2/s 12
3.3
Thermal Shock Resistance, points 16 to 53
52

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0.35 to 0.4
0 to 0.1
Chromium (Cr), % 0.9 to 1.2
0
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 96.6 to 98
0 to 0.25
Manganese (Mn), % 0.6 to 0.9
0
Molybdenum (Mo), % 0.15 to 0.3
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4