MakeItFrom.com
Menu (ESC)

EN 1.7213 Steel vs. 1100A Aluminum

EN 1.7213 steel belongs to the iron alloys classification, while 1100A aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.7213 steel and the bottom bar is 1100A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Tensile Strength: Ultimate (UTS), MPa 500 to 1550
89 to 170

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 420
170
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
640
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 44
230
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
60
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
200

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.5
8.2
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 52
1190

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 18 to 55
9.1 to 17
Strength to Weight: Bending, points 18 to 38
16 to 25
Thermal Diffusivity, mm2/s 12
93
Thermal Shock Resistance, points 15 to 45
4.0 to 7.6

Alloy Composition

Aluminum (Al), % 0
99 to 100
Carbon (C), % 0.22 to 0.29
0
Chromium (Cr), % 0.9 to 1.2
0
Copper (Cu), % 0 to 0.25
0.050 to 0.2
Iron (Fe), % 96.7 to 98.1
0 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0.6 to 0.9
0 to 0.050
Molybdenum (Mo), % 0.15 to 0.3
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0.020 to 0.040
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15