MakeItFrom.com
Menu (ESC)

EN 1.7213 Steel vs. 4007 Aluminum

EN 1.7213 steel belongs to the iron alloys classification, while 4007 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.7213 steel and the bottom bar is 4007 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 500 to 1550
130 to 160

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 420
170
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1420
590
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 44
170
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
42
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
140

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
9.5
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 1.5
8.1
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 52
1160

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 18 to 55
12 to 15
Strength to Weight: Bending, points 18 to 38
20 to 23
Thermal Diffusivity, mm2/s 12
67
Thermal Shock Resistance, points 15 to 45
5.5 to 6.7

Alloy Composition

Aluminum (Al), % 0
94.1 to 97.6
Carbon (C), % 0.22 to 0.29
0
Chromium (Cr), % 0.9 to 1.2
0.050 to 0.25
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0 to 0.25
0 to 0.2
Iron (Fe), % 96.7 to 98.1
0.4 to 1.0
Magnesium (Mg), % 0
0 to 0.2
Manganese (Mn), % 0.6 to 0.9
0.8 to 1.5
Molybdenum (Mo), % 0.15 to 0.3
0
Nickel (Ni), % 0
0.15 to 0.7
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
1.0 to 1.7
Sulfur (S), % 0.020 to 0.040
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15