MakeItFrom.com
Menu (ESC)

EN 1.7216 Steel vs. CC332G Bronze

EN 1.7216 steel belongs to the iron alloys classification, while CC332G bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.7216 steel and the bottom bar is CC332G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 280
130
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 12 to 23
22
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 650 to 930
620
Tensile Strength: Yield (Proof), MPa 400 to 690
250

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 420
220
Melting Completion (Liquidus), °C 1460
1060
Melting Onset (Solidus), °C 1420
1010
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 46
45
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
12

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
29
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.5
3.4
Embodied Energy, MJ/kg 20
55
Embodied Water, L/kg 50
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 1280
270
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 23 to 33
21
Strength to Weight: Bending, points 21 to 27
19
Thermal Diffusivity, mm2/s 12
12
Thermal Shock Resistance, points 19 to 27
21

Alloy Composition

Aluminum (Al), % 0
8.5 to 10.5
Carbon (C), % 0.27 to 0.34
0
Chromium (Cr), % 0.8 to 1.2
0
Copper (Cu), % 0
80 to 86
Iron (Fe), % 97.2 to 98.4
1.0 to 3.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.35 to 0.6
0 to 2.0
Molybdenum (Mo), % 0.15 to 0.3
0
Nickel (Ni), % 0
1.5 to 4.0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.35
0 to 0.2
Sulfur (S), % 0 to 0.035
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5