MakeItFrom.com
Menu (ESC)

EN 1.7216 Steel vs. N06035 Nickel

EN 1.7216 steel belongs to the iron alloys classification, while N06035 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7216 steel and the bottom bar is N06035 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 12 to 23
34
Fatigue Strength, MPa 290 to 440
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
84
Shear Strength, MPa 410 to 560
440
Tensile Strength: Ultimate (UTS), MPa 650 to 930
660
Tensile Strength: Yield (Proof), MPa 400 to 690
270

Thermal Properties

Latent Heat of Fusion, J/g 250
340
Maximum Temperature: Mechanical, °C 420
1030
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
450
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
60
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 1.5
10
Embodied Energy, MJ/kg 20
140
Embodied Water, L/kg 50
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 130
180
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 1280
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23 to 33
22
Strength to Weight: Bending, points 21 to 27
20
Thermal Shock Resistance, points 19 to 27
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0.27 to 0.34
0 to 0.050
Chromium (Cr), % 0.8 to 1.2
32.3 to 34.3
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 97.2 to 98.4
0 to 2.0
Manganese (Mn), % 0.35 to 0.6
0 to 0.5
Molybdenum (Mo), % 0.15 to 0.3
7.6 to 9.0
Nickel (Ni), % 0
51.1 to 60.2
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0 to 0.35
0 to 0.6
Sulfur (S), % 0 to 0.035
0 to 0.015
Tungsten (W), % 0
0 to 0.6
Vanadium (V), % 0
0 to 0.2