MakeItFrom.com
Menu (ESC)

EN 1.7228 Steel vs. EN 1.7707 Steel

Both EN 1.7228 steel and EN 1.7707 steel are iron alloys. Both are furnished in the quenched and tempered condition. They have a very high 98% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.7228 steel and the bottom bar is EN 1.7707 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
300
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 12
11
Fatigue Strength, MPa 390
500
Impact Strength: V-Notched Charpy, J 22
31
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 540
600
Tensile Strength: Ultimate (UTS), MPa 900
1010
Tensile Strength: Yield (Proof), MPa 630
800

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 420
460
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 46
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
3.3
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.9
Embodied Energy, MJ/kg 20
27
Embodied Water, L/kg 51
58

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1050
1690
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 32
36
Strength to Weight: Bending, points 26
29
Thermal Diffusivity, mm2/s 12
11
Thermal Shock Resistance, points 26
29

Alloy Composition

Carbon (C), % 0.46 to 0.54
0.26 to 0.34
Chromium (Cr), % 0.9 to 1.2
2.3 to 2.7
Iron (Fe), % 96.7 to 98
94.7 to 96.8
Manganese (Mn), % 0.5 to 0.8
0.4 to 0.7
Molybdenum (Mo), % 0.15 to 0.3
0.15 to 0.25
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 0.4
0 to 0.4
Sulfur (S), % 0 to 0.035
0 to 0.035
Vanadium (V), % 0
0.1 to 0.2