MakeItFrom.com
Menu (ESC)

EN 1.7231 Steel vs. Grade Ti-Pd8A Titanium

EN 1.7231 steel belongs to the iron alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7231 steel and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240 to 280
200
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 12
13
Fatigue Strength, MPa 360 to 500
260
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 790 to 930
500
Tensile Strength: Yield (Proof), MPa 570 to 800
430

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 420
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 46
21
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
6.9

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.5
49
Embodied Energy, MJ/kg 20
840
Embodied Water, L/kg 51
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 100
65
Resilience: Unit (Modulus of Resilience), kJ/m3 870 to 1700
880
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 28 to 33
31
Strength to Weight: Bending, points 24 to 27
31
Thermal Diffusivity, mm2/s 12
8.6
Thermal Shock Resistance, points 23 to 27
39

Alloy Composition

Carbon (C), % 0.38 to 0.45
0 to 0.1
Chromium (Cr), % 0.8 to 1.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 96.4 to 98.1
0 to 0.25
Manganese (Mn), % 0.6 to 1.0
0
Molybdenum (Mo), % 0.15 to 0.3
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.8 to 99.9
Residuals, % 0
0 to 0.4