MakeItFrom.com
Menu (ESC)

EN 1.7233 Steel vs. AWS ER80S-B3L

Both EN 1.7233 steel and AWS ER80S-B3L are iron alloys. They have a very high 98% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7233 steel and the bottom bar is AWS ER80S-B3L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 18 to 23
19
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
74
Tensile Strength: Ultimate (UTS), MPa 700 to 960
630
Tensile Strength: Yield (Proof), MPa 380 to 780
530

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
41
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
4.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.6
1.8
Embodied Energy, MJ/kg 21
23
Embodied Water, L/kg 53
60

Common Calculations

PREN (Pitting Resistance) 3.3
6.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 200
120
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 1630
730
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25 to 34
22
Strength to Weight: Bending, points 22 to 28
21
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 21 to 28
18

Alloy Composition

Carbon (C), % 0.39 to 0.45
0 to 0.050
Chromium (Cr), % 1.2 to 1.5
2.3 to 2.7
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 96.2 to 97.5
93.6 to 96
Manganese (Mn), % 0.4 to 0.7
0.4 to 0.7
Molybdenum (Mo), % 0.5 to 0.7
0.9 to 1.2
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.4
0.4 to 0.7
Sulfur (S), % 0 to 0.035
0 to 0.025
Residuals, % 0
0 to 0.5