MakeItFrom.com
Menu (ESC)

EN 1.7233 Steel vs. Grade 30 Titanium

EN 1.7233 steel belongs to the iron alloys classification, while grade 30 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7233 steel and the bottom bar is grade 30 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18 to 23
23
Fatigue Strength, MPa 270 to 530
250
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
41
Shear Strength, MPa 450 to 590
240
Tensile Strength: Ultimate (UTS), MPa 700 to 960
390
Tensile Strength: Yield (Proof), MPa 380 to 780
350

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 430
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 39
21
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
6.9

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.6
36
Embodied Energy, MJ/kg 21
600
Embodied Water, L/kg 53
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 200
86
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 1630
590
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 25 to 34
24
Strength to Weight: Bending, points 22 to 28
26
Thermal Diffusivity, mm2/s 11
8.6
Thermal Shock Resistance, points 21 to 28
30

Alloy Composition

Carbon (C), % 0.39 to 0.45
0 to 0.080
Chromium (Cr), % 1.2 to 1.5
0
Cobalt (Co), % 0
0.2 to 0.8
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 96.2 to 97.5
0 to 0.3
Manganese (Mn), % 0.4 to 0.7
0
Molybdenum (Mo), % 0.5 to 0.7
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.035
0
Titanium (Ti), % 0
98 to 99.76
Residuals, % 0
0 to 0.4