MakeItFrom.com
Menu (ESC)

EN 1.7233 Steel vs. Grade Ti-Pd17 Titanium

EN 1.7233 steel belongs to the iron alloys classification, while grade Ti-Pd17 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7233 steel and the bottom bar is grade Ti-Pd17 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 290
200
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18 to 23
22
Fatigue Strength, MPa 270 to 530
140
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 700 to 960
270
Tensile Strength: Yield (Proof), MPa 380 to 780
190

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 430
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 39
21
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
7.1

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.6
36
Embodied Energy, MJ/kg 21
600
Embodied Water, L/kg 53
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 200
55
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 1630
180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 25 to 34
17
Strength to Weight: Bending, points 22 to 28
21
Thermal Diffusivity, mm2/s 11
8.8
Thermal Shock Resistance, points 21 to 28
21

Alloy Composition

Carbon (C), % 0.39 to 0.45
0 to 0.1
Chromium (Cr), % 1.2 to 1.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 96.2 to 97.5
0 to 0.2
Manganese (Mn), % 0.4 to 0.7
0
Molybdenum (Mo), % 0.5 to 0.7
0
Nickel (Ni), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.035
0
Titanium (Ti), % 0
98.9 to 99.96
Residuals, % 0
0 to 0.4