MakeItFrom.com
Menu (ESC)

EN 1.7233 Steel vs. C84000 Brass

EN 1.7233 steel belongs to the iron alloys classification, while C84000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7233 steel and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 290
65
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18 to 23
27
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 700 to 960
250
Tensile Strength: Yield (Proof), MPa 380 to 780
140

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 430
170
Melting Completion (Liquidus), °C 1460
1040
Melting Onset (Solidus), °C 1420
940
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 39
72
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
16
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
17

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
30
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 1.6
3.0
Embodied Energy, MJ/kg 21
49
Embodied Water, L/kg 53
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 200
58
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 1630
83
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 25 to 34
8.2
Strength to Weight: Bending, points 22 to 28
10
Thermal Diffusivity, mm2/s 11
22
Thermal Shock Resistance, points 21 to 28
9.0

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0.39 to 0.45
0
Chromium (Cr), % 1.2 to 1.5
0
Copper (Cu), % 0
82 to 89
Iron (Fe), % 96.2 to 97.5
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.4 to 0.7
0 to 0.010
Molybdenum (Mo), % 0.5 to 0.7
0
Nickel (Ni), % 0
0.5 to 2.0
Phosphorus (P), % 0 to 0.025
0 to 0.050
Silicon (Si), % 0 to 0.4
0 to 0.0050
Sulfur (S), % 0 to 0.035
0.1 to 0.65
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 0
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7